Background

High Electric Demand Day (HEDD) Initiative

- OTC initiative identified link between HEDD and high ground level ozone concentrations
- DEC committed to reduce NO_X emissions by 50.8 tpd on high electric demand days
- Established and new reduction efforts have been assessed and implemented

Established NOx RACT Regulations

- Cement kilns (6 NYCRR Part 220)
- Iron and steel process sources (6 NYCRR Part 216)
- Coke oven batteries (6 NYCRR Part 214)
- General process NO_X sources (6 NYCRR Part 212)

More Recent NOx reduction efforts

NOx RACT, 6 NYCRR Subpart 227-21

- Stricter NOx emissions limits
- Applies to 799 boilers & 55 combined cycle CT's, no direct changes for simple cycle turbines (peakers)
- Estimated reductions of ~79 tpd of NO_X (from 2007 levels)
- Has impacted some peakers like Holtsville & Barrett, facilities
 which could not use system averaging

Still Air Quality Issues, what else?

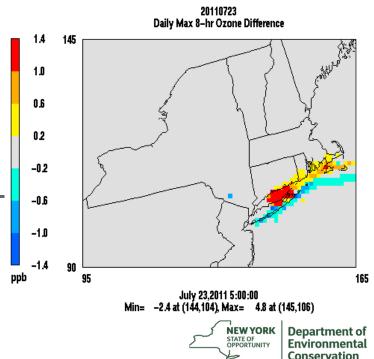
Peaking Units (combustion turbines)

- Peaking units have been identified as a significant of NO_X emissions in need of reductions.
- In NYMA 154 peakers installed prior to 1987 and 23 after (149 prior to 1975)
- Pre-1987 peakers are significantly less efficient than their older counterparts.
 Nox Heat Input Gross Load Efficiency

		NOx (tons)	Heat Input (MMBtu)	Gross Load (MWh)	Efficiency	
Pre-198	7 Peakers	1,345	5,880,519	425,018	24.8%	Department of
Post-19	87 Peakers	44	4,651,613	526,185	38.6%	Environmental Conservation
2011 - 2014 high ozone days						

Peaker Emissions Analysis

- Emissions were analyzed for 45 days between 2011-2015 with ozone levels above 75ppb.
- Pre and post 1987 peakers were compared.
- Post-1987 peakers are >90% cleaner than older units and show the kind of control which is achievable.


	Pre-1987	Post-1987	Pre-1987	Post-1987
	(lbs/MMBtu)	(lbs/MMBtu)	(lbs/MWh)	(lbs/MWh)
2011 NOx Rate*	0.457	0.026	6.406	0.231
2012 NOx Rate*	0.458	0.020	6.590	0.174
2013 NOx Rate*	0.460	0.011	6.012	0.102
2014 NOx Rate*	0.421	0.010	6.195	0.089
*Rates for high				
ozone days				

Department of Environmental Conservation

Peaker Modeling Analysis - Ozone

- Peaking units were identified in EGU and peaking EGU modeling files.
- On a high ozone day shows a 4.8ppb contribution, which is estimated by the difference daily 8hour max ozone between base case and zero-out peaking units case.

Ozone Contribution from NY Peakers

Conclusions

- Peakers emit significant NO_X emissions
- Most peakers were installed prior to 1987
- All peakers installed prior to 1987 emit NO_X at a significantly higher rate than those installed after 1987.

